Unexpected discovery of estrone in the rotational spectrum of estradiol: a systematic investigation of a CP-FTMW spectrum

We report the reinvestigation of the high-resolution rotational spectrum of estradiol. After removing the known spectral lines corresponding to three conformers of estradiol identified in the gas phase before, a large number of spectral lines remained unassigned in the spectrum. The observation of remaining lines is a common feature in spectra obtained by broadband rotational spectroscopy. In our reinvestigation, the detection of certain patterns resulted in two new sets of experimental rotational constants. Here we describe a systematic analysis, which together with quantum-chemical computations culminated in the assignment of two estrone conformers, namely exhibiting the trans– and the cis-arrangement of the hydroxy group attached to the rigid steroid backbone.
Estrone and estradiol only differ in two atomic mass units, and they show a dynamic interconversion equilibrium under certain conditions, which might also have been the case in our experiments due to the heating temperature of 195 °C. The results illustrate the potential of high-resolution rotational spectroscopy to discern between structurally related molecules and to provide their gas-phase structures without information beforehand exploiting the benefit of having remaining unassigned rotational transitions in the spectrum.

Regioselective synthesis, physicochemical properties and anticancer activity of 2-aminomethylated estrone derivatives

The unique estrogen receptor (ER)-independent antiproliferative and apoptotic activity of 2-methoxyestradiol (2ME2) is well known, however, its use has been limited because of its poor oral bioavailability. In this study, novel 2-aminomethylated estrone (E) and estradiol (E2) derivatives structurally related to 2ME2 were synthesized, and their physicochemical properties as well as their in vitro cytotoxic effects were investigated in the hope to find more selective antiproliferative agents with improved pharmacokinetic profile. The target compounds were synthesized from 2-dimethylaminomethylated E obtained regioselectively by a three-component Mannich reaction. Quaternization with methyl iodide followed by reacting the ammonium salt with various dialkyl and alicyclic secondary amines afforded the desired products in good yields.
The reactions proceeded via a 1,4-nucleophilic addition of the applied secondary amines to the ortho-quinone methide (o-QM) intermediates, generated in situ from the salt by base-promoted β-elimination. The compound library has been enlarged with structurally similar E2 analogues obtained by stereoselective reduction and with some 17β-benzylamino derivatives prepared by reductive amination. The potential values of the novel E and E2 derivatives were characterised by means of three different approaches. At the first step compounds were virtually screened using physicochemical parameters. Physicochemical characterization was completed by kinetic solubility and in vitro intestinal-specific permeability measurement. Antiproliferative effects were additionally determined on a panel of malignant and non-cancerous cell lines. The evaluation of the pharmacological profile of the novel E and E2 derivatives was completed with the calculation of lipophilic efficacy (LiPE).

Algorithms with Area under the Curve for Daily Urinary Estrone-3-Glucuronide and Pregnanediol-3-Glucuronide to Signal the Transition to the Luteal Phase

Background and Objectives: Home fertility assessment methods (FAMs) for natural family planning (NFP) have technically evolved with the objective metrics of urinary luteinizing hormone (LH), estrone-3-glucuronide (E3G) and pregnanediol-3-glucuronide (PDG). Practical and reliable algorithms for timing the phase of cycle based upon E3G and PDG levels are mostly unpublished and still lacking.
Materials and Methods: A novel formulation to signal the transition to the luteal phase was discovered, tested, and developed with a data set of daily E3G and PDG levels from 25 women, 78 cycles, indexed to putative ovulation (day after the urinary LH surge), Day 0. The algorithm is based upon a daily relative progressive change in the ratio, E3G-AUC/PDG-AUC, where E3G-AUC and PDG-AUC are the area under the curve for E3G and PDG, respectively. To improve accuracy the algorithm incorporated a three-fold cycle-specific increase of PDG.
Results: An extended negative change in E3G-AUC/PDG-AUC of at least nine consecutive days provided a strong signal for timing the luteal phase. The algorithm correctly identified the luteal transition interval in 78/78 cycles and predicted the start day of the safe period as: Day + 2 in 10/78 cycles, Day + 3 in 21/78 cycles, Day + 4 in 28/78 cycles, Day + 5 in 15/78 cycles, and Day + 6 in 4/78 cycles. The mean number of safe luteal days with this algorithm was 10.3 ± 1.3 (SD).
Conclusions: An algorithm based upon the ratio of the area under the curve for daily E3G and PDG levels along with a relative PDG increase offers another approach to time the phase of cycle. This may have applications for NFP/FAMs and clinical evaluation of ovarian function.

The Role of Estriol and Estrone in Keratoconic Stromal Sex Hormone Receptors

Keratoconus (KC) is a progressive corneal thinning disease that manifests in puberty and worsens during pregnancy. KC onset and progression are attributed to diverse factors that include: environmental, genetics, and hormonal imbalances; however, the pathobiology remains elusive. This study aims to determine the role of corneal stroma sex hormone receptors in KC and their interplay with estrone (E1) and estriol (E3) using our established 3D in vitro model. Healthy cornea stromal cells (HCFs) and KC cornea stromal cells (HKCs), both male and female, were stimulated with various concentrations of E1 and E3.
Significant changes were observed between cell types, as well as between males and females in the sex hormone receptors tested; androgen receptor (AR), progesterone receptor (PR), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ) using Western blot analysis. E1 and E3 stimulations in HCF females showed AR, PR, and ERβ were significantly upregulated compared to HCF males. In contrast, ERα and ERβ had significantly higher expression in HKC’s females than HKC’s males. Our data suggest that the human cornea is a sex-dependent, hormone-responsive tissue that is significantly influenced by E1 and E3. Therefore, it is plausible that E1, E3, and sex hormone receptors are involved in the KC pathobiology, warranting further investigation.

Estrone(Estrone) ELISA Kit

EU3107 FN Test 96T 628.92 EUR

Rat Estrone(Estrone) ELISA Kit

ER1506 FN Test 96T 628.92 EUR

Estrone

AT185 Unibiotest 1mg 1336.8 EUR

Estrone

AG185 Unibiotest 1 mg 627.6 EUR

Estrone

A8426-5.1 ApexBio 10 mM (in 1mL DMSO) 135.6 EUR

Estrone

A8426-50 ApexBio 50 mg 157.2 EUR

Estrone

HY-B0234 MedChemExpress 10mM/1mL 135.6 EUR

Estrone

TBZ2970 ChemNorm 25mg Ask for price

Estrone ELISA Kit| Rat Estrone ELISA Kit

EF018156 Lifescience Market 96 Tests 826.8 EUR

Estrone ELISA Kit| General Estrone ELISA Kit

EF019603 Lifescience Market 96 Tests 826.8 EUR

Estrone-BSA

80-1448 Fitzgerald 1 mg 781.2 EUR

Estrone-OVA

80-1449 Fitzgerald 1 mg 781.2 EUR

Estrone-2,4,16,16-d4

GC2791-10 Glentham Life Sciences 10 242.4 EUR

Estrone-2,4,16,16-d4

GC2791-100 Glentham Life Sciences 100 866.8 EUR

Estrone-2,4,16,16-d4

GC2791-25 Glentham Life Sciences 25 354.2 EUR

Estrone-2,4,16,16-d4

GC2791-50 Glentham Life Sciences 50 550.1 EUR

Estrone Antibody

20-abx100039 Abbexa
  • 493.20 EUR
  • 159.60 EUR
  • 1362.00 EUR
  • 661.20 EUR
  • 376.80 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug

Human Estrone(E1)

QY-E05701 Qayee Biotechnology 96T 433.2 EUR

Estrone ELISA kit

55R-IB59105 Fitzgerald 96 wells 403.2 EUR

Estrone (E1) Antibody

abx411527-01ml Abbexa 0.1 ml 610.8 EUR

Estrone 6 antibody

20R-ER009 Fitzgerald 10 ul 159.6 EUR

Estrone Protein (OVA)

20-abx651039 Abbexa
  • 693.60 EUR
  • 309.60 EUR
  • 2064.00 EUR
  • 828.00 EUR
  • 510.00 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug
Background: Pseudomonas citronellolis SJTE-3 can efficiently degrade 17β-estradiol (E2) and other estrogenic chemicals. However, the enzyme responsible for E2 metabolism within strain SJTE-3 has remained unidentified.
Objective: Here, a novel 3-oxoacyl-(acyl-carrier protein) (ACP) reductase, HSD-X1 (WP_009617962.1), was identified in SJTE-3 and its enzymatic characteristics for the transformation of E2 were investigated.
Methods: Multiple sequence alignment and homology modelling were used to predict the protein structure of HSD-X1. The concentrations of different steroids in the culture of recombinant strains expressing HSD-X1 were determined by high performance liquid chromatography. Additionally, the transcription of hsd-x1 gene was investigated using reverse transcription and quantitative PCR analysis. Heterologous expression and affinity purification were used to obtain recombinant HSD-X1.
Results: The transcription of hsd-x1 gene in P. citronellolis SJTE-3 was induced by E2. Multiple sequence alignment (MSA) indicated that HSD-X1 contained the two consensus regions and conserved residues of short-chain dehydrogenase/reductases (SDRs) and 17β-hydroxysteroid dehydrogenases (17β-HSDs). Over-expression of hsd-x1 gene allowed the recombinant strain to degrade E2. Recombinant HSD-X1 was purified with a yield of 22.15 mg/L and used NAD+ as its cofactor to catalyze the oxidization of E2 into estrone (E1), while exhibiting a Km value of 0.025 ± 0.044 mM and a Vmax value of 4.92 ± 0.31 mM/min/mg. HSD-X1 could tolerate a wide range of temperature and pH, while the presence of divalent ions exerted little influence on its activity. Further, the transformation efficiency of E2 into E1 was over 98.03% across 15 min.
Conclusion: Protein HSD-X1 efficiently catalyzed the oxidization of E2 and participated in estrogen degradation by P. citronellolis SJTE-3.

Leave a Reply

Your email address will not be published.